USN

18CV52

Fifth Semester B.E. Degree Examination, Feb./Mar. 2022 Analysis of Indeterminate Structures

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. Assume missing data suitably.

Module-1

Analyze the continuous beam shown in Fig.Q.1 by slope deflection method. Draw BMD and SFD. (20 Marks)

OR

Analyze the portal frame shown in Fig.Q.2 by slope deflection method. Draw BMD.

(20 Marks)

Module-2

Analyze the beam shown in Fig.Q.3 by moment distribution method. Draw BMD EI is constant. (20 Marks)

Fig.Q.3

OR

4 Analyze the portal frame by moment-distribution method draw BMD.

(20 Marks)

Fig.Q.4

Module-3

Analyze the continuous beam loaded shown in Fig.Q.5 by Kani's rotation method. Draw BMD. (20 Marks)

Fig.Q.5

OR

6 Analyze the frame shown in Fig.Q.6 by Kani's method. Take the advantage of symmetry.
(20 Marks)

Fig.Q.6

Module-4

7 Analyze the continuous beam by flexibility matrix method (system approach). Draw BMD. (Fig.Q.7). (20 Marks)

Fig.Q.7

CENTRA

LIBRAR

8

Analyze the L-frame shown in Fig.Q.8 by flexibility matrix method. Draw BMD (system approach). (20 Marks)

Module-5

Analyze the continuous beam by stiffness matrix method (system approach) shown in Fig.Q.9. Draw BMD EI is constant. (20 Marks)

Fig.Q.9

OR

Find the forces in the members of a joint 'O' shown in Fig.Q.10 by stiffness matrix method. (system approach). (20 Marks)

Fig.Q.10